Carbon and hydrogen isotope fractionation by microbial methane oxidation: improved determination.
نویسندگان
چکیده
Isotope fractionation is a promising tool for quantifying methane oxidation in landfill cover soils. For good quantification an accurate determination of the isotope fractionation factor (alpha) of methane oxidation based on independent batch experiments with soil samples from the landfill cover is required. Most studies so far used data analysis methods based on approximations of the Rayleigh model to determine alpha. In this study, the two most common approximations were tested, the simplified Rayleigh approach and the Coleman method. To do this, the original model of Rayleigh was described in measurable variables, methane concentration and isotopic abundances, and fitted to batch oxidation data by means of a weighted non-linear errors-in-variables regression technique. The results of this technique were used as a benchmark to which the results of the two conventional approximations were compared. Three types of batch data were used: simulated data, data obtained from the literature, and data obtained from new batch experiments conducted in our laboratory. The Coleman approximation was shown to be acceptable but not recommended for carbon fractionation (error on alpha-1 up to 5%) and unacceptable for hydrogen fractionation (error up to 20%). The difference between the simplified Rayleigh approach and the exact Rayleigh model is much smaller for both carbon and hydrogen fractionation (error on alpha-1<0.05%). There is also a small difference when errors in both variables (methane concentration and isotope abundance) are accounted for instead of assuming an error-free independent variable. By means of theoretical calculations general criteria, not limited to methane, (13)C, or D, were developed for the validity of the simplified Rayleigh approach when using labelled compounds.
منابع مشابه
Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane
Carbon isotope fractionation factors associated with the aerobic consumption of methane (C1), ethane (C2), propane (C3), and nbutane (C4) were determined from incubations of marine sediment collected from the Coal Oil Point hydrocarbon seep field, located offshore Santa Barbara, CA. Hydrogen isotope fractionation factors for C1, C2 and C3 were determined concurrently. Fresh sediment samples fro...
متن کاملCarbon and hydrogen isotope fractionation by moderately thermophilic methanogens
A series of laboratory studies were conducted to increase understanding of stable carbon (C/C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetateand hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionatio...
متن کاملIron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps.
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with (13)C-labeled methane showed co-occurring sulfate reduct...
متن کاملStable Isotope Tracing of Anaerobic Methane Oxidation in the Gassy Sediments of Eckernförde Bay, German Baltic Sea
Methane concentrations in the pore waters of Eckernförde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling di...
متن کاملHigh Sulfur Isotope Fractionation Associated with Anaerobic Oxidation of Methane in a Low-Sulfate, Iron-Rich Environment
Sulfur isotope signatures provide key information for the study of microbial activity in modern systems and the evolution of the Earth surface redox system. Microbial sulfate reducers shift sulfur isotope distributions by discriminating against heavier isotopes. This discrimination is strain-specific and often suppressed at sulfate concentrations in the lower micromolar range that are typical t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Waste management
دوره 26 4 شماره
صفحات -
تاریخ انتشار 2006